Tech Solution

NASA’s Perseverance rover is about to begin trying to find life on Mars

The touchdown

The technical phrases for the seven minutes of terror is “entry, descent, and touchdown,” or EDL. It begins when the spacecraft enters the Martian higher ambiance at round 20,000 kilometers per hour (12,500 miles per hour) and faces quickly growing temperatures. Perseverance is protected by a warmth defend and shell, in addition to a set of 28 sensors that monitor scorching gases and winds. Temperatures peak at a punishing 13,00 °C (2,400 °F).

About 4 minutes into EDL—roughly 11 kilometers (seven miles) above the floor and nonetheless hurtling to the bottom at about 1,500 km/h (940 mph)—the rover deploys a 21-meter parachute The spacecraft will do away with its warmth defend quickly. Beneath are a slew of different radar devices and cameras that will probably be used to set the spacecraft down in a secure spot. Software program referred to as Terrain-Relative Navigation processes photos taken by the cameras and compares them with an onboard topographical map to determine the place the spacecraft is and which potential secure spots it ought to head for. 

At rather less than six minutes into EDL and round two kilometers within the air, the outer shell and parachute separate from the rover, and Perseverance heads instantly for the bottom. The descent stage (connected on prime of the rover) makes use of its thrusters to discover a secure spot inside 10 to 100 meters of its present drop location, and slows right down to round 2.7 km/h (1.7 mph). Nylon cords on the descent stage decrease the rover to the bottom from 20 meters (66 toes) within the air. As soon as the rover touches the bottom, the cords are severed and the descent stage flies away to crash into the bottom from a secure distance. Perseverance is now at its new dwelling.

A view of Jezero crater. On the left is a spectral map of mineral deposits formed by water exercise previously. On the proper is a hazard map created for example excessive tough terrain that Perservance will search to keep away from when touchdown.


The science

Spirit and Alternative helped us higher perceive the historical past of water on Mars, and Curiosity discovered proof of advanced organics—carbon-rich molecules which are the uncooked substances for all times. Mixed, this proof informed us Mars could have been liveable previously. Perseverance goes to take the following massive step:looking for signs of ancient extraterrestrial life. 

Why Jezero crater? It’s a former lake bed that’s 3.8 billion years old. A river used to carry water into it, and it is at the river delta where sediments could have deposited preserved organic compounds and minerals associated with biological life. 

Twenty-three cameras on Perseverance will study Mars for evidence of life. The most important of these are the Mastcam-Z camera, which can take stereoscopic and panoramic images and has an extraordinarily high zoom capability to highlight targets (such as soil patterns and old sediment formations) that deserve closer study; SuperCam, which can investigate chemical and mineral composition in the rock and has a microphone that will be used to listen to the Martian weather; and the PIXL and SHERLOC spectrometers, which will look for complex molecules that indicate biology. SHERLOC’s Watson camera will also do some microscopic imaging down to a resolution of 100 microns (hardly bigger than the width of a human hair). 

Briony Horgan, a planetary scientist at Purdue University who’s part of the Mastcam-Z team, says scientists are most interested in finding organic matter that’s either heavily concentrated or could only be the result of biological activity, such as stromatolites (fossilized remains created by layers of bacteria). “If we find particular patterns, it could qualify as a biosignature that’s evidence of life,” she says. “Even if it’s not concentrated, if we see it in the right context, it could be a really powerful sign of a real biosignature.”

After Perseverance lands, engineers will spend several weeks testing and calibrating all instruments and functions before the science investigation begins in earnest. Once that’s over, Perseverance will spend a couple more months driving out to the first exploration sites at Jezero crater. We could find evidence of life on Mars as soon as this summer—if it was ever there. 

New world, new tech

Like any new NASA mission, Perseverance is also a platform for demonstrating some of the most state-of-the-art technology in the solar system. 

One is MOXIE, a small device that seeks to turn the carbon-dioxide-heavy Martian atmosphere into usable oxygen through electrolysis (using an electric current to separate elements). This has been done before on Earth, but it’s important to prove that it works on Mars if we hope humans can live there one day. Oxygen production could not only provide a Martian colony with breathable air; it could also be used to generate liquid oxygen for rocket fuel. MOXIE should have about 10 opportunities to make oxygen during Perseverance’s first two years, during different seasons and times of the day. It will run for about an hour each time, producing 6 to 10 grams of oxygen per session. 

There’s also Ingenuity, a 1.8-kilogram helicopter that could take the first powered controlled flight ever made on another planet. Deploying Ingenuity (which is stowed underneath the rover) will take about 10 days. Its first flight will be about three meters into the air, where it will hover for about 20 seconds. If it successfully flies in Mars’s ultra-thin atmosphere (1{69439eabc38bbe67fb47fc503d1b0f790fcef507f9cafca8a4ef4fbfe163a7c5} as dense as Earth’s), Ingenuity will have many more chances to fly elsewhere. Two cameras on the helicopter will help us see exactly what it sees. On its own, Ingenuity won’t be critical for exploring Mars, but its success could pave the way for engineers to think about new ways to explore other planets when a rover or lander will not suffice.

Neither of those demonstrations will be the marquee moment for Perseverance. The highlight of the mission, which may take 10 years to realize, will be the return of Martian soil samples to Earth. Perseverance will drill into the ground and collect more than 40 samples, most of which will be returned to Earth as part of a joint NASA-ESA mission. NASA officials suggest that this mission could come in either 2026 or 2028, which means the earliest they may be returned to Earth is 2031. 

Collecting such samples is no small feat. Robotics company Maxar built the sample handling arm (SHA) that controls the drilling mechanism to collect cores of Martian soil from the ground. The company had to build something that worked autonomously, with hardware and electronics that could withstand temperature swings from -73 °C (100 °F) at night to more than 20 °C (70 °F) during the day. And most important, it had to build something that could contend with the Martian dust. 

“When you’re talking about a moving mechanism that has to apply force and go exactly where you need it to go, you can’t have a tiny little dust particle stopping the whole show,” says Lucy Condakchian, the general manager of robotics at Maxar. SHA, located underneath the rover itself, is exposed to a ton of dust kicked up by the rover’s wheels or by drilling. Various innovations should help it withstand this problem, including new lubricants and a metallic accordion design for its lateral (front-to-back) movement.

Before any of those things are proved to work, however, the rover needs to make it to Mars in one piece. 

“It never gets old,” says Condakchian. “I’m just as nervous as I’ve been on the previous missions. But it’s a good nervous—an excitement to be doing this again.”

Source link

Comments Off on NASA’s Perseverance rover is about to begin trying to find life on Mars